MATS226 Tason kvasikonformikuvaukset (9 op)
Opinnon taso:
Syventävät opinnot
Arviointiasteikko:
0-5
Suorituskieli:
englanti, suomi
Vastuuorganisaatio:
Matematiikan ja tilastotieteen laitos
Opetussuunnitelmakaudet:
2024-2025, 2025-2026, 2026-2027, 2027-2028
Kuvaus
Opintojaksolla käsitellään tason kvasikonformikuvausten perusteoriaa ja sen lukuisia yhteyksiä mm. harmoniseen analyysiin ja osittaisdifferentiaaliyhtälöiden teoriaan. Opintojakson keskeisiä aiheita ovat Beltramin yhtälö ja Beurlingin muunnos, mitallinen Riemannin kuvauslause, ja kuvausten säännöllisyysominaisuudet.
Osaamistavoitteet
Opiskelijat tuntevat tason kvasikonformikuvausten määritelmän ja perusominaisuudet, sekä tason teorialle tyypillisiä tuloksia, kuten mitallisen Riemannin kuvauslauseen. Opiskelijat oppivat myös kuinka teoria kytkeytyy muihin matematiikan osa-alueisiin.
Esitietojen kuvaus
Mitta- ja integraaliteoria 1 ja 2, Kompleksianalyysi 1 ja 2
Kirjallisuus
- Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.
Suoritustavat
Tapa 1
Arviointiperusteet:
yhteispistemäärä laskuharjoituksista ja/tai esitelmästä ja/tai tentistä opintojakson toteutuksesta riippuen
Valitaan kaikki merkityt osat
Tapa 2
Arviointiperusteet:
lopputentin pistemäärä
Valitaan kaikki merkityt osat
Suoritustapojen osat
x
Osallistuminen opetukseen (9 op)
Tyyppi:
Osallistuminen opetukseen
Arviointiasteikko:
0-5
Arviointiperusteet:
yhteispistemäärä laskuharjoituksista ja/tai esitelmästä ja/tai tentistä opintojakson toteutuksesta riippuen
Suorituskieli:
englanti, suomi
Työskentelytavat:
luento-opetus ja harjoitustehtävät
x
Tentti (9 op)
Tyyppi:
Tentti
Arviointiasteikko:
0-5
Arviointiperusteet:
lopputentin pistemäärä
Suorituskieli:
englanti, suomi