MATJ5115 MA3: Optimal Stopping and Free-Boundary Problems (JSS32) (2 op)
Opinnon taso:
Jatko-opinnot
Arviointiasteikko:
Hyväksytty - hylätty
Suorituskieli:
englanti
Vastuuorganisaatio:
Matemaattis-luonnontieteellinen tiedekunta
Opetussuunnitelmakaudet:
2023-2024
Kuvaus
The lectures will disclose a fascinating connection between optimal stopping problems in probability and free-boundary problems in analysis. The focus will be on explaining the key concepts and principles through examples.
The topics to be covered and linked to free-boundary problems include:
- Optimal stopping problems
- Optimal prediction problems
- Nonlinear optimal stopping problems
- Quickest detection problems
- Optimal stopping games
References:
- Peskir, G. and Shiryaev, A. N. (2006). Optimal stopping and free-boundary problems. Lectures in Mathematics, ETH Zurich, Birkhauser, Basel (500 pp)
- Various research articles (2006-2023)
Osaamistavoitteet
On successful completion of the course, the student will know
- what an optimal stopping problem (OSP) is
- how to classify OSPs
- how to establish a one-to-one correspondence between a given OSP and a free-boundary problem (FBP)
- how to solve a FBP
- how to verify that a solution to FBP is the sought solution to OSP
- how to make use of the derived solutions in various theoretical and applied settings
Esitietojen kuvaus
In addition to being familiar with basic probability and analysis concepts, some knowledge of
- Markov processes (Brownian motion & Poisson process)
- Martingales (optional sampling theorem)
- Stochastic calculus (Ito's formula) will be helpful although not necessary
Suoritustavat
Tapa 1
Kuvaus:
Lectures and exercises
Arviointiperusteet:
Pass/fail. Minimum attendance of 80% at lectures.
Valitaan kaikki merkityt osat
Suoritustapojen osat
x
Osallistuminen opetukseen (2 op)
Tyyppi:
Osallistuminen opetukseen
Arviointiasteikko:
Hyväksytty - hylätty
Suorituskieli:
englanti