MATJ5114 MA2: On the Geometry of Rectifiable and Purely Unrectifiable Subsets of a Metric Space (JSS32) (2 op)

Opinnon taso:
Jatko-opinnot
Arviointiasteikko:
Hyväksytty - hylätty
Suorituskieli:
englanti
Vastuuorganisaatio:
Matemaattis-luonnontieteellinen tiedekunta
Opetussuunnitelmakaudet:
2023-2024

Kuvaus

  • Rectifiability in metric spaces: basic definitions and Kirchheim's description of rectifiable metric spaces. Comparison to classical rectifiability.
  • Sufficient conditions for rectifiability: bi-Lipschitz decompositions of functions; rectifiability from topology; Alberti representations.
  • Gromov--Hausdorff convergence of metric measure spaces and the various definitions of tangent metric measure spaces.
  • Characterising rectifiable metric spaces in terms of flat tangent spaces.

Osaamistavoitteet

The main objective is to give a concise introduction to the theory of rectifiability in an arbitrary metric space and to draw comparisons to classical rectifiability in Euclidean space. The students will also become familiar with concepts in analysis on metric spaces and Gromov--Hausdorff convergence.

Esitietojen kuvaus

Standard theory of undergraduate analysis and measure theory

Suoritustavat

Tapa 1

Kuvaus:
Lectures and exercises. During the exercise sessions, participants discuss homework problems and course contents with the lecturer and course assistants. Room is reserved Mon-Fri at 4-5 pm for participants who would like to work on the exercises.
Valitaan kaikki merkityt osat
Suoritustapojen osat
x

Osallistuminen opetukseen (2 op)

Tyyppi:
Osallistuminen opetukseen
Arviointiasteikko:
Hyväksytty - hylätty
Suorituskieli:
englanti
Työskentelytavat:

Lectures and exercises. During the exercise sessions, participants discuss homework problems and course contents with the lecturer and course assistants. Room is reserved Mon-Fri at 4-5 pm for participants who would like to work on the exercises.

Opetus