MATS226 Tason kvasikonformikuvaukset (9 op)
Opinnon taso:
Syventävät opinnot
Arviointiasteikko:
0-5
Suorituskieli:
englanti, suomi
Vastuuorganisaatio:
Matematiikan ja tilastotieteen laitos
Opetussuunnitelmakaudet:
2020-2021, 2021-2022, 2022-2023, 2023-2024
Kuvaus
Kurssilla käsitellään tason kvasikonformikuvausten perusteoriaa ja sen lukuisia yhteyksiä mm. harmoniseen analyysiin ja osittaisdifferentiaaliyhtälöiden teoriaan. Kurssin keskeisiä aiheita ovat Beltramin yhtälö ja Beurlingin muunnos, mitallinen Riemannin kuvauslause, ja kuvausten säännöllisyysominaisuudet.
Osaamistavoitteet
Opiskelijat tuntevat tason kvasikonformikuvausten määritelmän ja perusominaisuudet, sekä tason teorialle tyypillisiä tuloksia, kuten mitallisen Riemannin kuvauslauseen. Opiskelijat oppivat myös kuinka teoria kytkeytyy muihin matematiikan osa-alueisiin.
Esitietojen kuvaus
Mitta- ja integraaliteoria, Kompleksianalyysi
Kirjallisuus
- Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.
Suoritustavat
Tapa 1
Arviointiperusteet:
yhteispistemäärä laskuharjoituksista ja/tai esitelmästä ja/tai tentistä opintojakson toteutuksesta riippuen
Valitaan kaikki merkityt osat
Tapa 2
Arviointiperusteet:
lopputentin pistemäärä
Valitaan kaikki merkityt osat
Suoritustapojen osat
x
Osallistuminen opetukseen (9 op)
Tyyppi:
Osallistuminen opetukseen
Arviointiasteikko:
0-5
Arviointiperusteet:
yhteispistemäärä laskuharjoituksista ja/tai esitelmästä ja/tai tentistä opintojakson toteutuksesta riippuen
Suorituskieli:
englanti, suomi
Työskentelytavat:
luento-opetus ja harjoitustehtävät
Opetus
12.1.–19.5.2023 Luento-opetus
x
Tentti (9 op)
Tyyppi:
Tentti
Arviointiasteikko:
0-5
Arviointiperusteet:
lopputentin pistemäärä
Suorituskieli:
englanti, suomi