MATS235 Sobolev-avaruudet (9 op)

Opinnon taso:
Syventävät opinnot
Arviointiasteikko:
0-5
Suorituskieli:
englanti, suomi
Vastuuorganisaatio:
Matematiikan ja tilastotieteen laitos
Opetussuunnitelmakaudet:
2020-2021, 2021-2022, 2022-2023

Kuvaus

Sobolev-avaruudet ovat keskeinen työkalu modernissa analyysissa ja sovelletussa matematiikassa. Kurssilla esitetään Sobolev-avaruuksien teorian perusteet. Käsiteltäviä asioita ovat mm.
  • konvoluutioapproksimaatio
  • heikko (eli yleistetty eli distributiivinen) derivaatta
  • ykkösen ositus ja Sobolev-funktioiden approksimointi sileillä funktioilla
  • Sobolevin epäyhtälöt
  • Sobolev-funktioiden ACL-karakterisaatio
  • heikko ja vahva konvergenssi L^p- ja Sobolev-avaruuksissa
  • p-kapasiteetti

Osaamistavoitteet

Kurssilla opitaan Sobolev-avaruuksien perusominaisuudet. Tavoitteena on, että opiskelija osaa käyttää heikon derivaatan määritelmää ja ominaisuuksia, Sobolevin epäyhtälöitä, Sobolev-funktioiden approksimointia sileillä funktioilla ja Sobolev-avaruuksien eri karakteriaatioita.

Esitietojen kuvaus

Mitta- ja integraaliteoria 1&2

Kirjallisuus

  • L.C. Evans & R.F. Gariepy, Measure Theory and Fine Properties of Functions; ISBN: 9781482242386
  • W.P. Ziemer, Weakly Differentiable Functions; ISBN: 978-0-387-97017-2
  • G. Leoni, A first course in Sobolev spaces; ISBN: 978-0821847688

Suoritustavat

Tapa 1

Arviointiperusteet:
kurssitentin pistemäärä ja laskuharjoitushyvitysten summa
Valitaan kaikki merkityt osat

Tapa 2

Arviointiperusteet:
lopputentin pistemäärä
Valitaan kaikki merkityt osat
Suoritustapojen osat
x

Osallistuminen opetukseen (9 op)

Tyyppi:
Osallistuminen opetukseen
Arviointiasteikko:
0-5
Arviointiperusteet:
kurssitentin pistemäärä ja laskuharjoitushyvitysten summa
Suorituskieli:
englanti, suomi
Työskentelytavat:

luento-opetus ja harjoitustehtävät

Opetus

x

Tentti (9 op)

Tyyppi:
Tentti
Arviointiasteikko:
0-5
Arviointiperusteet:
lopputentin pistemäärä
Suorituskieli:
englanti, suomi

Opetus