MATA256 Vektorianalyysi 2 (4 op)
Kuvaus
Sisältö
Euklidisen avaruuden topologiaa: (jono)kompaktius, polkuyhtenäisyys, alue
- derivaatta lineaarikuvauksena, korkeammat derivaatat, ääriarvoista,
- kontraktio, käänteiskuvauslause, implisiittifunktiolause,
- mahdollisesti käyrän pituus ja käyräintegraali
- mahdollisesti esimerkiksi konveksit funktiot
P.M Fitzpatrick: Advanced Calculus (luvut 11, 12, 15-17, 20.1)
Suoritustavat
Kurssikoe ja harjoitukset tai pelkkä loppukoe.
Tarkemmat suoritustiedot opetusohjelmassa.
Arviointiperusteet
Arviointiin vaikuttavat ratkaistut harjoitustehtävät, menestys mahdollisissa viikkokokeissa ja kurssikokeessa, tai pelkästään menestys lopputentissä. Katso tarkemmat tiedot opetusohjelmasta. Lopputentissä suoritus hyväksytään, jos saavutettu pistemäärä on vähintään puolet tentin kokonaispistemäärästä.
Osaamistavoitteet
Kurssin suoritettuaan opiskelija:
- tuntee Euklidisen avaruuden joukon kompaktiuden ja polkuyhtenäisyyden määritelmät ja osaa ratkaista käsitteisiin liittyviä todistustehtäviä.
- ymmärtää differentioituvuuden, derivaatan ja suuntaisderivaattojen käsitteet sekä niiden geometrisen merkityksen
- tuntee käänteiskuvauslauseen ja implisiittifunktiolauseen sekä osaa soveltaa niitä
- hallitsee kontraktion käsitteen
- hallitsee käyrän ja sen pituuden käsitteet
Lisätietoja
28 kontaktiopetusta ja 7 harjoituskertaa.
Esitietojen kuvaus
Kirjallisuus
- P.M Fitzpatrick: Advanced Calculus (2nd ed); ISBN: 978-0-8218-4791-6