MATA230 Geometria (5 op)

Opinnon taso:
Aineopinnot
Arviointiasteikko:
0-5
Suorituskieli:
suomi
Vastuuorganisaatio:
Matematiikan ja tilastotieteen laitos
Opetussuunnitelmakaudet:
2017-2018, 2018-2019, 2019-2020

Kuvaus

Sisältö

Kurssilla tutustutaan Hilbertin aksioomajärjestelmään ja neutraaliin geometriaan, joka on sekä euklidisen että epäeuklidisen (hyperbolisen) geometrian pohjana. Lisäksi käsitellään euklidisen ja/tai hyperbolisen geometrian perustuloksia sekä havainnollistetaan hyperbolista geometriaa esimerkiksi Poincarén kiekkomallin avulla.

Suoritustavat

Kurssitentti. Kurssitenttiin saa lisäpisteitä tehdyistä harjoitustehtävistä opetusohjelmassa ilmoitettavan laskutavan mukaisesti.

Opintojakson vaihtoehtoisena suoritustapana on lopputentti.

Arviointiperusteet

Opintojakson arvosana määräytyy
a) kurssitentin pistemäärän ja laskuharjoitushyvitysten summan
TAI
b) lopputentin pistemäärän
perusteella.

Hyväksyttyyn suoritukseen vaaditaan vähintään puolet maksimipistemäärästä.

Osaamistavoitteet

Opintojakson suorittamisen jälkeen opiskelija
- tuntee aksiomaattisten järjestelmien perusrakenteen, erityisesti aksioomien riippumattomuuden käsitteen
- ymmärtää aksiomaattisiin järjestelmiin liittyvien mallien roolin
- osaa todistaa keskeisimpiä neutraalin geometrian sekä euklidisen ja/tai hyperbolisen geometrian tuloksia
- on tietoinen euklidisen ja hyperbolisen geometrian yhteisestä pohjasta ja keskeisimmistä eroista
- osaa havainnollistaa hypebolista geometriaa mallien avulla

Lisätietoja

28h luentoja, 7 harjoituskertaa

Esitietojen kuvaus

Euklidinen tasogeometria on suositeltava, mutta ei välttämätön esitieto.

Oppimateriaalit

Luentomoniste (Kurittu, Hokkanen, Kahanpää: Geometria)

Kirjallisuus

  • Hartshorne, R., Geometry : Euclid and beyond, Springer cop. 2000.; ISBN: 0-387-98650-2
  • Greenberg, M.J., Euclidean and non-Euclidean geometries : development and history, W.H. Freeman cop. 1993. 3rd ed; ISBN: 0716724464

Suoritustavat

Tapa 1

Valitaan kaikki merkityt osat
Suoritustapojen osat
x
Julkaisematon arviointikohde